Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bone Rep ; 21: 101761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646090

RESUMEN

Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.

2.
Bone ; 184: 117106, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641232

RESUMEN

Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.

3.
JBMR Plus ; 8(2): ziae004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38505524

RESUMEN

Skeletal fragility and high fracture rates are common in CKD. A key component of bone loss in CKD with secondary hyperparathyroidism is high bone turnover and cortical bone deterioration through both cortical porosity and cortical thinning. We hypothesized that RANKL drives high bone resorption within cortical bone leading to the development of cortical porosity in CKD (study 1) and that systemic inhibition of RANKL would mitigate the skeletal phenotype of CKD (study 2). In study 1, we assessed the skeletal properties of male and female Dmp1-cre RANKLfl/fl (cKO) and control genotype (Ranklfl/fl; Con) mice after 10 wk of adenine-induced CKD (AD; 0.2% dietary adenine). All AD mice regardless of sex or genotype had elevated blood urea nitrogen and high PTH. Con AD mice in both sexes had cortical porosity and lower cortical thickness as well as high osteoclast-covered trabecular surfaces and higher bone formation rate. cKO mice had preserved cortical bone microarchitecture despite high circulating PTH as well as no CKD-induced increases in osteoclasts. In study 2, male mice with established AD CKD were either given a single injection of an anti-RANKL antibody (5 mg/kg) 8 wk post-induction of CKD or subjected to 3×/wk dosing with risedronate (1.2 µg/kg) for 4 wk. Anti-RANKL treatment significantly reduced bone formation rate as well as osteoclast surfaces at both trabecular and cortical pore surfaces; risedronate treatment had little effect on these bone parameters. In conclusion, these studies demonstrate that bone-specific RANKL is critical for the development of high bone formation/high osteoclasts and cortical bone loss in CKD with high PTH. Additionally, systemic anti-RANKL ligand therapy in established CKD may help prevent the propagation of cortical bone loss via suppression of bone turnover.

4.
Am J Nephrol ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377965

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) negatively affects musculoskeletal health, leading to reduced mobility and quality of life. In healthy populations, carnitine supplementation and aerobic exercise have been reported to improve musculoskeletal health. However, there are inconclusive results regarding their effectiveness and safety in CKD. We hypothesized that carnitine supplementation and individualized treadmill exercise would improve musculoskeletal health in CKD. METHODS: We used a spontaneously progressive CKD rat model (Cy/+ rat) (n=11-12/gr): 1) Cy/+ (CKD-Ctrl), 2) CKD-carnitine (CKD-Carn), and 3) CKD-treadmill (CKD-TM). Carnitine (250mg/kg) was injected daily for 10-weeks. Rats in the treadmill group ran 4 days/week on a 5° incline for 10-weeks progressing from 30 min/day for week one to 40 min/day for week two to 50 min/day for the remaining eight weeks. At 32 weeks of age, we assessed overall cardiopulmonary fitness, muscle function, bone histology and architecture, and kidney function. Data was analyzed by one-way ANOVA with Tukey's multiple comparisons tests. RESULTS: Moderate to severe CKD was confirmed by biochemistries for blood urea nitrogen (mean 43±5 mg/dl CKD-Ctrl), phosphorus (mean 8±1 mg/dl CKD-Ctrl), parathyroid hormone (PTH; mean 625±185 pg/ml CKD-Ctrl), and serum creatinine (mean 1.1±0.2 mg/ml CKD-Ctrl). Carnitine worsened phosphorous (mean 11±3 mg/dl CKD-Carn; p<0.0001), PTH (mean 1738±1233 pg/ml CKD-Carn; p<0.0001), creatinine (mean 1±0.3 mg/dl CKD-Carn; p<0.0001), cortical bone thickness (mean 0.5±0.1 mm CKD-Ctrl, 0.4±0.1 mm CKD-Carn; p<0.05). Treadmill running significantly improve maximal aerobic capacity when compared to CKD-Ctrl (mean 14±2 min CKD-TM, 10±2 min CKD-Ctrl; p<0.01). CONCLUSION: Carnitine supplementation worsened CKD progression, mineral metabolism biochemistries and cortical porosity, and did not have an impact on physical function. Individualized treadmill running improved maximal aerobic capacity but did not have an impact on CKD progression or bone properties. Future studies should seek to better understand carnitine doses in conditions of compromised renal function to prevent toxicity which may result from elevated carnitine levels and to optimize exercise prescriptions for musculoskeletal health.

5.
JBMR Plus ; 7(12): e10837, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130753

RESUMEN

Chronic kidney disease (CKD)-mineral bone disorder (CKD-MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD-MBD is unknown. To determine the effect of fiber on CKD-MBD, we fed the Cy/+ rat with progressive CKD a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD-MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut-derived uremic toxins. Results were analyzed by two-way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor-23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short-chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD-MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut-derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

6.
Clin J Am Soc Nephrol ; 18(11): 1456-1465, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574661

RESUMEN

INTRODUCTION: Secondary hyperparathyroidism is associated with osteoporosis and fractures. Etelcalcetide is an intravenous calcimimetic for the control of hyperparathyroidism in patients on hemodialysis. Effects of etelcalcetide on the skeleton are unknown. METHODS: In a single-arm, open-label, 36-week prospective trial, we hypothesized that etelcalcetide improves bone quality and strength without damaging bone-tissue quality. Participants were 18 years or older, on hemodialysis ≥1 year, without calcimimetic exposure within 12 weeks of enrollment. We measured pretreatment and post-treatment areal bone mineral density by dual-energy X-ray absorptiometry, central skeleton trabecular microarchitecture by trabecular bone score, and peripheral skeleton volumetric bone density, geometry, microarchitecture, and estimated strength by high-resolution peripheral quantitative computed tomography. Bone-tissue quality was assessed using quadruple-label bone biopsy in a subset of patients. Paired t tests were used in our analysis. RESULTS: Twenty-two participants were enrolled; 13 completed follow-up (mean±SD age 51±14 years, 53% male, and 15% White). Five underwent bone biopsy (mean±SD age 52±16 years and 80% female). Over 36 weeks, parathyroid hormone levels declined 67%±9% ( P < 0.001); areal bone mineral density at the spine, femoral neck, and total hip increased 3%±1%, 7%±2%, and 3%±1%, respectively ( P < 0.05); spine trabecular bone score increased 10%±2% ( P < 0.001); and radius stiffness and failure load trended to a 7%±4% ( P = 0.05) and 6%±4% increase ( P = 0.06), respectively. Bone biopsy demonstrated a decreased bone formation rate (mean difference -25±4 µ m 3 / µ m 2 per year; P < 0.01). CONCLUSIONS: Treatment with etelcalcetide for 36 weeks was associated with improvements in central skeleton areal bone mineral density and trabecular quality and lowered bone turnover without affecting bone material properties. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: The Effect of Etelcalcetide on CKD-MBD (Parsabiv-MBD), NCT03960437.


Asunto(s)
Huesos , Péptidos , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Péptidos/efectos adversos , Densidad Ósea , Absorciometría de Fotón
7.
Front Endocrinol (Lausanne) ; 14: 1141906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455901

RESUMEN

Introduction: Reductions in energy availability leading to weight loss can induce loss of bone and impact important endocrine regulators of bone integrity. We sought to elucidate whether endurance exercise (EX) can mitigate bone loss observed in sedentary (SED) skeletally mature rodents subjected to graded energy deficits. Methods: Female virgin rats (n=84, 5-mo-old; 12/group) were randomized to baseline controls and either sedentary (SED) or exercise (EX) conditions, and within each exercise status to adlib-fed (ADLIB), or moderate (MOD) or severe (SEV) energy restriction diets for 12 weeks. Rats assigned to EX groups performed treadmill running to increase weekly energy expenditure by 10%. MOD-ER-SED, SEV-ER-SED, MOD-ER-EX and SEV-ER-EX were fed modified AIN93M diets with 20%, 40% 10%, and 30% less energy content, respectively, with 100% of all other nutrients provided. Results: Energy availability (EA) was effectively reduced by ~14% and ~30% in the MOD-ER and SEV-ER groups, respectively. MOD-ER for 12 weeks resulted in few negative impacts on bone and, except for serum leptin in MOD-ER-SED rats, no significant changes in endocrine factors. By contrast, SEV-ER in SED rats resulted in significantly lower total body and femoral neck bone mass, and reduced serum estradiol, IGF-1 and leptin. EX rats experiencing the same reduction in energy availability as SEV-ER-SED exhibited higher total body mass, lean mass, total BMC, and higher serum IGF-1 at the end of 12 weeks. Bone mechanical properties at 3 bone sites (mid-femur, distal femur, femoral neck) were minimally impacted by ER but positively affected by EX. Discussion: These findings indicate that combining increased EX energy expenditure with smaller reductions in energy intake to achieve a targeted reduction in EA provides some protection against loss of bone mass and lean mass in skeletally mature female rats, likely due to better preservation of circulating IGF-1, and that bone mechanical integrity is not significantly degraded with either moderate or severe reduced EA.


Asunto(s)
Leptina , Condicionamiento Físico Animal , Animales , Femenino , Ratas , Huesos , Factor I del Crecimiento Similar a la Insulina , Condicionamiento Físico Animal/fisiología
8.
Bone ; 173: 116805, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196853

RESUMEN

Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements. This study aimed to determine if CAL could modify healthy and diseased bone through cell-independent mechanisms that alter hydration similar to RAL. 26-week-old male C57BL/6 mice induced with chronic kidney disease (CKD) beginning at 16 weeks of age via 0.2 % adenine-laced casein-based (0.9 % P, 0.6 % C) chow, and their non-CKD control littermates (Con), were utilized. Upon sacrifice, right femora were randomly assigned to the following ex vivo experimental groups: RAL (2 µM, n = 10 CKD, n = 10 Con), CAL (100 nM, n = 10 CKD, n = 10 Con), or Vehicle (VEH; n = 9 CKD, n = 9 Con). Bones were incubated in PBS + drug solution at 37 °C for 14 days using an established ex vivo soaking methodology. Cortical geometry (µCT) was used to confirm a CKD bone phenotype, including porosity and cortical thinning, at sacrifice. Femora were assessed for mechanical properties (3-point bending) and bone hydration (via solid state nuclear magnetic resonance spectroscopy with magic angle spinning (ssNMR)). Data were analyzed by two-tailed t-tests (µCT) or 2-way ANOVA for main effects of disease, treatment, and their interaction. Tukey's post hoc analyses followed a significant main effect of treatment to determine the source of the effect. Imaging confirmed a cortical phenotype reflective of CKD, including lower cortical thickness (p < 0.0001) and increased cortical porosity (p = 0.02) compared to Con. In addition, CKD resulted in weaker, less deformable bones. In CKD bones, ex vivo exposure to RAL or CAL improved total work (+120 % and +107 %, respectively; p < 0.05), post-yield work (+143 % and +133 %), total displacement (+197 % and +229 %), total strain (+225 % and +243 %), and toughness (+158 % and +119 %) vs. CKD VEH soaked bones. Ex vivo exposure to RAL or CAL did not impact any mechanical properties in Con bone. Matrix-bound water by ssNMR showed CAL treated bones had significantly higher bound water compared to VEH treated bones in both CKD and Con cohorts (p = 0.001 and p = 0.01, respectively). RAL positively modulated bound water in CKD bone compared to VEH (p = 0.002) but not in Con bone. There were no significant differences between bones soaked with CAL vs. RAL for any outcomes measured. RAL and CAL improve important post-yield properties and toughness in a non-cell mediated manner in CKD bone but not in Con bones. While RAL treated CKD bones had higher matrix-bound water content in line with previous reports, both Con and CKD bones exposed to CAL had higher matrix-bound water. Therapeutic modulation of water, specifically the bound water fraction, represents a novel approach to improving mechanical properties and potentially reducing fracture risk.


Asunto(s)
Conservadores de la Densidad Ósea , Fracturas Óseas , Animales , Masculino , Ratones , Conservadores de la Densidad Ósea/farmacología , Calcitonina , Fracturas Óseas/tratamiento farmacológico , Ratones Endogámicos C57BL , Clorhidrato de Raloxifeno/farmacología , Agua
9.
Bone ; 173: 116808, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207990

RESUMEN

Chronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.


Asunto(s)
Fracturas de Cadera , Insuficiencia Renal Crónica , Humanos , Animales , Ratas , Microtomografía por Rayos X , Porosidad , Hueso Cortical/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Densidad Ósea , Modelos Animales , Insuficiencia Renal Crónica/diagnóstico por imagen
10.
Front Endocrinol (Lausanne) ; 14: 1063083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777346

RESUMEN

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.


Asunto(s)
Insuficiencia Renal Crónica , Transcriptoma , Ratones , Animales , Huesos/metabolismo , Osteoblastos/metabolismo , Hueso Cortical/metabolismo , Insuficiencia Renal Crónica/patología , Proteínas de la Membrana/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
11.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778372

RESUMEN

Background: Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods: The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results: In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions: The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement: Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.

12.
J Neurotrauma ; 40(9-10): 901-917, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36226413

RESUMEN

Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise, as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age- and sex-matched sham-operated controls. Skeletal parameters, locomotor function, and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post-injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that whereas younger rats might re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared with middle-aged SCI rats, with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, whereas both young and middle-aged female SCI rats had lower bone formation in the subchronic but not the chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, whereas aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex- and age-dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.


Asunto(s)
Huesos , Traumatismos de la Médula Espinal , Ratas , Masculino , Femenino , Animales , Remodelación Ósea , Traumatismos de la Médula Espinal/complicaciones , Citocinas , Inflamación/etiología , Médula Espinal
13.
Bone ; 165: 116559, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116758

RESUMEN

Diabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton. We hypothesized that combining IDD and CKD in mice would cause structural and mechanical bone alterations that are more deleterious compared to the single disease states. Female C57BL6/J mice were divided into four groups: 1) N = 12 Control (CTRL), 2) N = 10 Streptozotocin-induced IDD (STZ), 3) N = 10 Adenine diet-induced CKD (AD), and 4) N = 9 Combination (STZ+AD). STZ administration resulted in significantly higher blood glucose, HbA1c (p < 0.0001), and glucose intolerance (p < 0.0001). AD resulted in higher blood urea nitrogen (p = 0.0002) while AD, but not STZ+AD mice, had high serum parathyroid hormone (p < 0.0001) and phosphorus (p = 0.0005). STZ lowered bone turnover (p = 0.001). Trabecular bone volume was lowered by STZ (p < 0.0001) and increased by AD (p = 0.003). Tissue mineral density was lowered by STZ (p < 0.0001) and AD (p = 0.02) in trabecular bone but only lowered by STZ in cortical bone (p = 0.002). Cortical porosity of the proximal tibia was increased by AD, moment of inertia was lower in both disease groups, and most cortical properties were lower in all groups vs CTRL. Ultimate force, stiffness, toughness, and total displacement/strain were lowered by STZ and AD. Fracture toughness was lower by AD (p = 0.003). Importantly, Cohen's D indicated that STZ+AD most strongly lowered bone turnover and mechanical properties. Taken together, structural and material-level bone properties are altered by STZ and AD while their combination resulted in greater detriments, indicating that improving bone health in the combined disease state may require novel interventions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Fracturas Óseas , Insulinas , Insuficiencia Renal Crónica , Femenino , Ratones , Animales , Estreptozocina , Modelos Animales de Enfermedad , Glucemia , Hemoglobina Glucada , Insuficiencia Renal Crónica/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Hormona Paratiroidea , Ratones Endogámicos C57BL , Adenina , Fósforo
14.
Bone Rep ; 17: 101612, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36035656

RESUMEN

Cortical porosity develops in chronic kidney disease (CKD) and increases with progressing disease. Cortical porosity is likely a prominent contributor to skeletal fragility/fracture. The degree to which cortical porosity occurs throughout the skeleton is not fully known. In this study, we assessed cortical bone porosity via micro-computed tomography at multiple skeletal sites in rats with progressive chronic kidney disease. We hypothesized that cortical porosity would occur in long bones throughout the body, but to a lesser degree in flat bones and irregular bones. Porosity was measured, using micro-CT, at 17 different skeletal sites in 6 male rats with CKD. Varying degrees of porosity were seen throughout the skeleton with higher porosity in flat and irregular bone (i.e. parietal bone, mandible) vs. long bones (p = 0.01) and in non-weightbearing bones vs. weightbearing bones (p = 0.01). Porosity was also higher in proximal sites vs. distal sites in long bones (p < 0.01 in all comparisons). There was large heterogeneity in porosity within skeletal sites across rats and within the same rat across skeletal sites. Correlations showed cortical porosity of the proximal tibia was positively associated with porosity at the other sites with the strongest correlation to the parietal bone and the weakest to the ulna. Overall, our data demonstrates varying and significant cortical bone porosity across the skeleton of animals with chronic kidney disease. These data point to careful selection of skeletal sites to assess porosity in pre-clinical studies and the potential for fractures at multiple skeletal sites in patients with CKD.

15.
Calcif Tissue Int ; 111(3): 323-330, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35704049

RESUMEN

The bone vasculature and blood flow are critical for bone modeling, remodeling, and regeneration. Vascular complications are one of the major health concerns of people with type 1 diabetes (T1D). Moreover, people with T1D have lower bone mineral density and increased bone fragility. The goal of this study was to understand whether bone perfusion was altered in a mouse model of T1D and how this related to changes in bone mass. T1D was induced via the administration of streptozotocin in 12-week-old C57BL/6NHsd male mice. The assessment of bone perfusion utilized the injection of fluorescent microspheres with assessment of levels in the bone. Femoral blood flow and VEGF-A expression in the cortical bone shafts were lower in the T1D mice, compared to healthy controls, in this pattern followed that of changes in bone mass. These data demonstrate a possible association between reduced skeletal perfusion and reduced bone mass in the setting of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Densidad Ósea/fisiología , Diabetes Mellitus Tipo 1/complicaciones , Fémur/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Perfusión
16.
Nephrol Dial Transplant ; 37(10): 1857-1867, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35482713

RESUMEN

BACKGROUND: Anemia and chronic kidney disease-mineral and bone disorder (CKD-MBD) are common and begin early in CKD. Limited studies have concurrently compared the effects of ferric citrate (FC) versus intravenous (IV) iron on CKD-MBD and iron homeostasis in moderate CKD. METHODS: We tested the effects of 10 weeks of 2% FC versus IV iron sucrose in rats with moderate CKD (Cy/+ male rat) and untreated normal (NL) littermates. Outcomes included a comprehensive assessment of CKD-MBD, iron homeostasis and oxidative stress. RESULTS: CKD rats had azotemia, elevated phosphorus, parathyroid hormone and fibroblast growth factor-23 (FGF23). Compared with untreated CKD rats, treatment with FC led to lower plasma phosphorus, intact FGF23 and a trend (P = 0.07) toward lower C-terminal FGF23. FC and IV iron equally reduced aorta and heart calcifications to levels similar to NL animals. Compared with NL animals, CKD animals had higher bone turnover, lower trabecular volume and no difference in mineralization; these were unaffected by either iron treatment. Rats treated with IV iron had cortical and bone mechanical properties similar to NL animals. FC increased the transferrin saturation rate compared with untreated CKD and NL rats. Neither iron treatment increased oxidative stress above that of untreated CKD. CONCLUSIONS: Oral FC improved phosphorus homeostasis, some iron-related parameters and the production and cleavage of FGF23. The intermittent effect of low-dose IV iron sucrose on cardiovascular calcification and bone should be further explored in moderate-advanced CKD.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Insuficiencia Renal Crónica , Animales , Biomarcadores , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/tratamiento farmacológico , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Compuestos Férricos , Sacarato de Óxido Férrico , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis , Hierro/uso terapéutico , Masculino , Minerales , Hormona Paratiroidea , Fósforo , Ratas , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Transferrinas/uso terapéutico
17.
JBMR Plus ; 6(3): e10600, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35309859

RESUMEN

Chronic kidney disease-mineral and bone disorder (CKD-MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end-stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD-MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT-137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP-2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C-terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8-OHdG in the serum or aorta. KP treatment reduced aortic 8-OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
Bone Rep ; 16: 101174, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35252482

RESUMEN

PURPOSE: Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS: In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via µCT and mechanical parameters evaluated by monotonic bending tests. RESULTS: Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION: A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.

19.
Bone ; 157: 116340, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35085840

RESUMEN

PURPOSE: Chronic kidney disease (CKD) leads to increased bone fragility and risk of fracture. Cortical deteriorations, including cortical porosity, are key factors in fracture susceptibility in CKD. Since secondary hyperparathyroidism is common in CKD individuals and contributes to cortical deterioration, we hypothesized that reducing parathyroid hormone (PTH) may modulate CKD-induced cortical porosity. The goal of this pilot study was to assess the effects of lowering PTH, via the preclinical analogue of the FDA-approved calcimimetic etelcalcetide (KP-2326), on the development and progression of cortical pores in the setting of CKD. METHODS: Male Cy/+ Sprague Dawley rats with clinical biochemistries consistent with CKD (N = 8) were assigned to the study. At 30-32 weeks of age, cortical bone was assessed via In vivo µCT and blood collected for biochemistries to create baseline measures. Calcimimetic treatment with KP-2326 (KP) was then administered 3× weekly for 2-4 weeks. Cortical bone and biochemical parameters were repeated at study endpoint (33-37 wks of age). A group of age- and cohort-matched CKD rats (N = 4) were utilized as untreated controls. RESULTS: Untreated CKD rats had significantly increased cortical porosity over time, while porosity in KP-treated CKD rats was not significantly changed over time. Individual pore analysis revealed that pore area was significantly higher for expanding pores in untreated CKD rats compared to KP-treated CKD rats. Mechanical properties of KP-treated animal femora were similar to historical values of age-matched CKD animals and lower than those of age-matched non-diseased animals. CONCLUSION: Our pilot preclinical study demonstrates that etelcalcetide treatment can mitigate the progression of cortical bone changes in an animal model of CKD through suppression of pre-existing cortical pore expansion and limiting the size of new pore development. While stabilization of porosity is beneficial it remains likely that infilling of porosity will be needed to positively affect mechanical properties of bones in the setting of CKD.


Asunto(s)
Hormona Paratiroidea , Péptidos , Insuficiencia Renal Crónica , Animales , Modelos Animales de Enfermedad , Masculino , Péptidos/uso terapéutico , Proyectos Piloto , Porosidad , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
20.
Bone ; 154: 116228, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624561

RESUMEN

PURPOSE: Chronic kidney disease (CKD) and aging are each independently associated with higher fracture risk. Although CKD is highly prevalent in the aging population, the interaction between these two conditions with respect to bone structure and mechanics is not well understood. The purpose of this study was to examine cortical porosity and mechanical properties in skeletally mature young and aging mice with CKD. METHODS: CKD was induced by feeding 16-week and 78-week male mice 0.2% adenine (AD) for six weeks followed by two weeks of maintenance on a control diet for a total study duration of eight weeks of CKD; control (CON) animals of each age were fed a standard diet. Serum biochemistries, µCT imaging, and mechanical properties via four-point bending were assessed at the endpoint. RESULTS: Phosphorus, parathyroid hormone, and blood urea nitrogen were elevated in both ages of AD mice compared to age-matched CON; aging AD mice had PTH and BUN values higher than all other groups. Femoral cortical porosity was more than four-fold higher in aging AD mice compared to young AD mice and more than two-fold higher compared to age-matched controls. Structural and estimated material mechanical properties were both lower in aging mice, but there were no significant interactions between AD treatment and age. CONCLUSION: These data show an interaction between CKD and aging that produces a more severe biochemical and cortical bone phenotype. This highlights the importance of studying mechanisms and potential interventions in both young and aged animals to translate to a broader spectrum of CKD patients.


Asunto(s)
Insuficiencia Renal Crónica , Anciano , Envejecimiento , Animales , Humanos , Masculino , Ratones , Hormona Paratiroidea , Fenotipo , Porosidad , Insuficiencia Renal Crónica/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...